Course: Very Deep Submicron Layout (VDSL)

Course Code
VDSL01

Course Pre-requisite
Prior experience of analog layout on a CMOS process

Learning Outcomes
- Layout of VDSL circuits on CMOS processes
- Understanding the impact layout has on yield and discuss how yield is no longer just a foundry responsibility
- Understanding the parasitics elements introduced by the VDSL process

Syllabus Content – Summary
- CMOS Scaling Implications
- Yield
- Interconnect Parasitics
- Device Parasitics
- Matching
- Isolation Strategies
- Design for Manufacture

Syllabus Content – Detailed

CMOS Scaling
Overview of the implications on layout of working on VDSM technology nodes.
- Moore’s Law
- Scaling Challenges
- CMOS Scaling Implications
- Shallow Trench Isolation (STI)
- Well Proximity Effect (WPE)

Yield
Understanding the impact layout has on yield and discusses how yield is no longer just a foundry responsibility.
- Key Factors
- Lithography
- Optical Proximity Correction (OPC)
- Phase Shift Mask (PSM)
- Chemical Mechanical Polishing (CMP)

Interconnect Parasitics
Introduces the parasitic elements introduced by the layout process during interconnect.
- Resistance
- Capacitances
- Extractions
Device Parasitics
An examination of the layout techniques used for laying out MOS transistors and other CMOS components so as to reduce power consumption, reduce area and increase frequency of operation.
- Resistor Model
- Capacitor Model
- MOS Model

Design For Manufacturing (DFM)
Discussion on a new element in the design flow on VDSM technologies where layouts have to be designed with manufacturing in mind.
- Design Rules
- Layout For High Yield
- Lithography Aware Layout

More Information:
http://www.icmaskdesign.com